Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Absence of Tryptase Mcpt6 Causes Elevated Cellular Stress in Response to Modulation of the Histone Acetylation Status in Mast Cells.

Identifieur interne : 000117 ( Main/Exploration ); précédent : 000116; suivant : 000118

The Absence of Tryptase Mcpt6 Causes Elevated Cellular Stress in Response to Modulation of the Histone Acetylation Status in Mast Cells.

Auteurs : Sebastin Santosh Martin [Suède] ; Fabio Rabelo Melo [Suède] ; Gunnar Pejler [Suède]

Source :

RBID : pubmed:31581668

Descripteurs français

English descriptors

Abstract

Mast cells contain large amounts of proteases stored within their secretory granules. Previously we showed that one of these proteases, tryptase, in addition to its location within granules, can also be found within the mast cell nucleus, where it has the capacity to affect the acetylation profile of nucleosomal core histones in aging cells. Based on this notion, and on the known sensitivity of mast cells to modulation of histone acetylation, we here asked whether tryptase could impact on the responses against cellular stress caused by disturbed histone acetylation status. To address this, wild-type and tryptase-deficient (Mcpt6-/-) mast cells were subjected to cell stress caused by trichostatin A (TSA), a histone deacetylase inhibitor. Wild-type and Mcpt6-/- mast cells were equally sensitive to TSA at an early stage of culture (~8 weeks). However, in aging mast cells (>50 weeks), tryptase-deficiency led to increased sensitivity to cell death. To address the underlying mechanism, we assessed effects of tryptase deficiency on the expression of markers for proliferation and cell stress. These analyses revealed aberrant regulation of thioredoxin, thioredoxin reductase, glutaredoxin, and glutathione reductase, as well as blunted upregulation of ribonucleotide reductase subunit R2 in response to TSA in aging cells. Moreover, the absence of tryptase led to increased expression of Psme4/PA200, a proteasome variant involved in the processing of acetylated core histones. Altogether, this study identifies a novel role for tryptase in regulating the manifestations of cell stress in aging mast cells.

DOI: 10.3390/cells8101190
PubMed: 31581668
PubMed Central: PMC6829390


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Absence of Tryptase Mcpt6 Causes Elevated Cellular Stress in Response to Modulation of the Histone Acetylation Status in Mast Cells.</title>
<author>
<name sortKey="Santosh Martin, Sebastin" sort="Santosh Martin, Sebastin" uniqKey="Santosh Martin S" first="Sebastin" last="Santosh Martin">Sebastin Santosh Martin</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, 75123 Uppsala, Sweden. sebastin.santhosh@imbim.uu.se.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, 75123 Uppsala</wicri:regionArea>
<orgName type="university">Université d'Uppsala</orgName>
<placeName>
<settlement type="city">Uppsala</settlement>
<region nuts="1">Svealand</region>
<region nuts="1">East Middle Sweden</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rabelo Melo, Fabio" sort="Rabelo Melo, Fabio" uniqKey="Rabelo Melo F" first="Fabio" last="Rabelo Melo">Fabio Rabelo Melo</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, 75123 Uppsala, Sweden. fabio.melo@imbim.uu.se.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, 75123 Uppsala</wicri:regionArea>
<orgName type="university">Université d'Uppsala</orgName>
<placeName>
<settlement type="city">Uppsala</settlement>
<region nuts="1">Svealand</region>
<region nuts="1">East Middle Sweden</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pejler, Gunnar" sort="Pejler, Gunnar" uniqKey="Pejler G" first="Gunnar" last="Pejler">Gunnar Pejler</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, 75123 Uppsala, Sweden. Gunnar.Pejler@imbim.uu.se.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, 75123 Uppsala</wicri:regionArea>
<orgName type="university">Université d'Uppsala</orgName>
<placeName>
<settlement type="city">Uppsala</settlement>
<region nuts="1">Svealand</region>
<region nuts="1">East Middle Sweden</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden. Gunnar.Pejler@imbim.uu.se.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, 75007 Uppsala</wicri:regionArea>
<wicri:noRegion>75007 Uppsala</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31581668</idno>
<idno type="pmid">31581668</idno>
<idno type="doi">10.3390/cells8101190</idno>
<idno type="pmc">PMC6829390</idno>
<idno type="wicri:Area/Main/Corpus">000108</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000108</idno>
<idno type="wicri:Area/Main/Curation">000108</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000108</idno>
<idno type="wicri:Area/Main/Exploration">000108</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The Absence of Tryptase Mcpt6 Causes Elevated Cellular Stress in Response to Modulation of the Histone Acetylation Status in Mast Cells.</title>
<author>
<name sortKey="Santosh Martin, Sebastin" sort="Santosh Martin, Sebastin" uniqKey="Santosh Martin S" first="Sebastin" last="Santosh Martin">Sebastin Santosh Martin</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, 75123 Uppsala, Sweden. sebastin.santhosh@imbim.uu.se.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, 75123 Uppsala</wicri:regionArea>
<orgName type="university">Université d'Uppsala</orgName>
<placeName>
<settlement type="city">Uppsala</settlement>
<region nuts="1">Svealand</region>
<region nuts="1">East Middle Sweden</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rabelo Melo, Fabio" sort="Rabelo Melo, Fabio" uniqKey="Rabelo Melo F" first="Fabio" last="Rabelo Melo">Fabio Rabelo Melo</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, 75123 Uppsala, Sweden. fabio.melo@imbim.uu.se.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, 75123 Uppsala</wicri:regionArea>
<orgName type="university">Université d'Uppsala</orgName>
<placeName>
<settlement type="city">Uppsala</settlement>
<region nuts="1">Svealand</region>
<region nuts="1">East Middle Sweden</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pejler, Gunnar" sort="Pejler, Gunnar" uniqKey="Pejler G" first="Gunnar" last="Pejler">Gunnar Pejler</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, 75123 Uppsala, Sweden. Gunnar.Pejler@imbim.uu.se.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, 75123 Uppsala</wicri:regionArea>
<orgName type="university">Université d'Uppsala</orgName>
<placeName>
<settlement type="city">Uppsala</settlement>
<region nuts="1">Svealand</region>
<region nuts="1">East Middle Sweden</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden. Gunnar.Pejler@imbim.uu.se.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, 75007 Uppsala</wicri:regionArea>
<wicri:noRegion>75007 Uppsala</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cells</title>
<idno type="eISSN">2073-4409</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetylation (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Cells, Cultured (MeSH)</term>
<term>Cellular Senescence (genetics)</term>
<term>Cellular Senescence (physiology)</term>
<term>Histone Deacetylase Inhibitors (pharmacology)</term>
<term>Histones (metabolism)</term>
<term>Hydroxamic Acids (pharmacology)</term>
<term>Mast Cells (drug effects)</term>
<term>Mast Cells (enzymology)</term>
<term>Mast Cells (physiology)</term>
<term>Mice (MeSH)</term>
<term>Oxidative Stress (genetics)</term>
<term>Oxidative Stress (physiology)</term>
<term>Tryptases (genetics)</term>
<term>Tryptases (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides hydroxamiques (pharmacologie)</term>
<term>Acétylation (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Cellules cultivées (MeSH)</term>
<term>Histone (métabolisme)</term>
<term>Inhibiteurs de désacétylase d'histone (pharmacologie)</term>
<term>Mastocytes (effets des médicaments et des substances chimiques)</term>
<term>Mastocytes (enzymologie)</term>
<term>Mastocytes (physiologie)</term>
<term>Souris (MeSH)</term>
<term>Stress oxydatif (génétique)</term>
<term>Stress oxydatif (physiologie)</term>
<term>Tryptases (génétique)</term>
<term>Tryptases (physiologie)</term>
<term>Vieillissement de la cellule (génétique)</term>
<term>Vieillissement de la cellule (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Tryptases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Histones</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Histone Deacetylase Inhibitors</term>
<term>Hydroxamic Acids</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Mast Cells</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Mastocytes</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Mastocytes</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Mast Cells</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cellular Senescence</term>
<term>Oxidative Stress</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Stress oxydatif</term>
<term>Tryptases</term>
<term>Vieillissement de la cellule</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Histone</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acides hydroxamiques</term>
<term>Inhibiteurs de désacétylase d'histone</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Mastocytes</term>
<term>Stress oxydatif</term>
<term>Tryptases</term>
<term>Vieillissement de la cellule</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Cellular Senescence</term>
<term>Mast Cells</term>
<term>Oxidative Stress</term>
<term>Tryptases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Acetylation</term>
<term>Animals</term>
<term>Cells, Cultured</term>
<term>Mice</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Acétylation</term>
<term>Animaux</term>
<term>Cellules cultivées</term>
<term>Souris</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mast cells contain large amounts of proteases stored within their secretory granules. Previously we showed that one of these proteases, tryptase, in addition to its location within granules, can also be found within the mast cell nucleus, where it has the capacity to affect the acetylation profile of nucleosomal core histones in aging cells. Based on this notion, and on the known sensitivity of mast cells to modulation of histone acetylation, we here asked whether tryptase could impact on the responses against cellular stress caused by disturbed histone acetylation status. To address this, wild-type and tryptase-deficient (Mcpt6
<sup>-/-</sup>
) mast cells were subjected to cell stress caused by trichostatin A (TSA), a histone deacetylase inhibitor. Wild-type and Mcpt6
<sup>-/-</sup>
mast cells were equally sensitive to TSA at an early stage of culture (~8 weeks). However, in aging mast cells (>50 weeks), tryptase-deficiency led to increased sensitivity to cell death. To address the underlying mechanism, we assessed effects of tryptase deficiency on the expression of markers for proliferation and cell stress. These analyses revealed aberrant regulation of thioredoxin, thioredoxin reductase, glutaredoxin, and glutathione reductase, as well as blunted upregulation of ribonucleotide reductase subunit R2 in response to TSA in aging cells. Moreover, the absence of tryptase led to increased expression of Psme4/PA200, a proteasome variant involved in the processing of acetylated core histones. Altogether, this study identifies a novel role for tryptase in regulating the manifestations of cell stress in aging mast cells.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31581668</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>08</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2073-4409</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2019</Year>
<Month>10</Month>
<Day>02</Day>
</PubDate>
</JournalIssue>
<Title>Cells</Title>
<ISOAbbreviation>Cells</ISOAbbreviation>
</Journal>
<ArticleTitle>The Absence of Tryptase Mcpt6 Causes Elevated Cellular Stress in Response to Modulation of the Histone Acetylation Status in Mast Cells.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E1190</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/cells8101190</ELocationID>
<Abstract>
<AbstractText>Mast cells contain large amounts of proteases stored within their secretory granules. Previously we showed that one of these proteases, tryptase, in addition to its location within granules, can also be found within the mast cell nucleus, where it has the capacity to affect the acetylation profile of nucleosomal core histones in aging cells. Based on this notion, and on the known sensitivity of mast cells to modulation of histone acetylation, we here asked whether tryptase could impact on the responses against cellular stress caused by disturbed histone acetylation status. To address this, wild-type and tryptase-deficient (Mcpt6
<sup>-/-</sup>
) mast cells were subjected to cell stress caused by trichostatin A (TSA), a histone deacetylase inhibitor. Wild-type and Mcpt6
<sup>-/-</sup>
mast cells were equally sensitive to TSA at an early stage of culture (~8 weeks). However, in aging mast cells (>50 weeks), tryptase-deficiency led to increased sensitivity to cell death. To address the underlying mechanism, we assessed effects of tryptase deficiency on the expression of markers for proliferation and cell stress. These analyses revealed aberrant regulation of thioredoxin, thioredoxin reductase, glutaredoxin, and glutathione reductase, as well as blunted upregulation of ribonucleotide reductase subunit R2 in response to TSA in aging cells. Moreover, the absence of tryptase led to increased expression of Psme4/PA200, a proteasome variant involved in the processing of acetylated core histones. Altogether, this study identifies a novel role for tryptase in regulating the manifestations of cell stress in aging mast cells.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Santosh Martin</LastName>
<ForeName>Sebastin</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, 75123 Uppsala, Sweden. sebastin.santhosh@imbim.uu.se.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rabelo Melo</LastName>
<ForeName>Fabio</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, 75123 Uppsala, Sweden. fabio.melo@imbim.uu.se.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pejler</LastName>
<ForeName>Gunnar</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, 75123 Uppsala, Sweden. Gunnar.Pejler@imbim.uu.se.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden. Gunnar.Pejler@imbim.uu.se.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>10</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Cells</MedlineTA>
<NlmUniqueID>101600052</NlmUniqueID>
<ISSNLinking>2073-4409</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D056572">Histone Deacetylase Inhibitors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006657">Histones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006877">Hydroxamic Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C509190">Tpsb2 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3X2S926L3Z</RegistryNumber>
<NameOfSubstance UI="C012589">trichostatin A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.59</RegistryNumber>
<NameOfSubstance UI="D053802">Tryptases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000107" MajorTopicYN="N">Acetylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016922" MajorTopicYN="N">Cellular Senescence</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056572" MajorTopicYN="N">Histone Deacetylase Inhibitors</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006657" MajorTopicYN="N">Histones</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006877" MajorTopicYN="N">Hydroxamic Acids</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008407" MajorTopicYN="N">Mast Cells</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053802" MajorTopicYN="N">Tryptases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Psme4</Keyword>
<Keyword MajorTopicYN="Y">cell stress</Keyword>
<Keyword MajorTopicYN="Y">glutathione</Keyword>
<Keyword MajorTopicYN="Y">mast cells</Keyword>
<Keyword MajorTopicYN="Y">thioredoxin</Keyword>
<Keyword MajorTopicYN="Y">tryptase</Keyword>
</KeywordList>
<CoiStatement>The authors declare no conflict of interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>08</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>09</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>09</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>10</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>10</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31581668</ArticleId>
<ArticleId IdType="pii">cells8101190</ArticleId>
<ArticleId IdType="doi">10.3390/cells8101190</ArticleId>
<ArticleId IdType="pmc">PMC6829390</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell. 2007 Feb 23;128(4):693-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17320507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Dis. 2019 Sep 10;10(9):659</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31506436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Regul Homeost Agents. 2019 Jun 11;33(3):657-659</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31184097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2010 Jun 17;115(24):4981-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20233968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2005 Feb;6(2):135-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15662442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Aug 25;264(24):13963-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2668278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Mar 14;289(11):7682-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24478313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Mar 19;392(6673):306-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9521329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Jun 1;13(11):1382-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10364156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Allergy Clin Immunol. 2018 Aug;142(2):370-380</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29247714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>World J Biol Chem. 2014 Feb 26;5(1):68-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24600515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Rev. 2007 Jun;217:304-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17498068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Respir J. 2019 Oct 31;54(4):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31371445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Allergy Clin Immunol. 2013 Mar;131(3):752-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23380220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2018 Oct;19(10):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30104204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jan 4;108(1):290-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21173247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Immunol. 2009 Aug;30(8):401-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19643669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 2016 Jan;186(1):4-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26477818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Rev. 2018 Mar;282(1):248-264</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29431207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2014 Jul;14(7):478-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24903914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2011 Oct;121(10):4180-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21926462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Immunol Res. 2013 Nov;1(5):269-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24777963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2013 May;13(5):362-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23558889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Rheum. 2008 Aug;58(8):2338-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18668540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2012 May 04;18(5):693-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22561833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Immunol. 2007 Feb;19(1):31-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17126541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Jan 6;403(6765):41-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10638745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2019 Aug 30;20(17):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31480219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Regul Homeost Agents. 2019 Jan 18;33(1):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30656901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2010 Mar;42(3):257-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19933375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2005 Mar 15;435(2):311-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15708374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1990 Jul 19;346(6281):274-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2374592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncotarget. 2017 Feb 7;8(6):9647-9659</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28038453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Immunol. 2007;95:167-255</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17869614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Rev. 1997 Oct;77(4):1033-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9354811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2012;836:201-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22252637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2006 May;273(9):1871-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16640553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Regul Homeost Agents. 2019 May-Jun;33(3):669-673</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31195792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 May 23;153(5):1012-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23706739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Allergy Clin Immunol. 2017 Aug;140(2):474-485</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28108335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Rev. 2018 Mar;282(1):232-247</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29431202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Rev. 2018 Mar;282(1):198-231</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29431218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jul 28;313(5786):526-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16873664</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
<region>
<li>East Middle Sweden</li>
<li>Svealand</li>
</region>
<settlement>
<li>Uppsala</li>
</settlement>
<orgName>
<li>Université d'Uppsala</li>
</orgName>
</list>
<tree>
<country name="Suède">
<region name="Svealand">
<name sortKey="Santosh Martin, Sebastin" sort="Santosh Martin, Sebastin" uniqKey="Santosh Martin S" first="Sebastin" last="Santosh Martin">Sebastin Santosh Martin</name>
</region>
<name sortKey="Pejler, Gunnar" sort="Pejler, Gunnar" uniqKey="Pejler G" first="Gunnar" last="Pejler">Gunnar Pejler</name>
<name sortKey="Pejler, Gunnar" sort="Pejler, Gunnar" uniqKey="Pejler G" first="Gunnar" last="Pejler">Gunnar Pejler</name>
<name sortKey="Rabelo Melo, Fabio" sort="Rabelo Melo, Fabio" uniqKey="Rabelo Melo F" first="Fabio" last="Rabelo Melo">Fabio Rabelo Melo</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000117 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000117 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31581668
   |texte=   The Absence of Tryptase Mcpt6 Causes Elevated Cellular Stress in Response to Modulation of the Histone Acetylation Status in Mast Cells.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31581668" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020